13.1-13.3 (tangents, normals, binormals of vector valued functions)

Problem 1. Do the particles with the following trajectories collide? Do their paths collide?

$$
\begin{aligned}
& \vec{r}_{1}(t)=\left\langle t^{2}, 7 t-12, t^{2}\right\rangle \\
& \vec{r}_{2}(t)=\left\langle 4 t-3, t^{2}, 5 t-6\right\rangle
\end{aligned}
$$

Problem 2. For $r(t)=\left\langle t-2, t^{2}+1\right\rangle$ sketch the curve, find $r^{\prime}(t)$, and sketch the position vector $r(t)$ and $r^{\prime}(t)$ at $t=-1$.

Problem 3. Find the unit tangent vector at the point of the curve $r(t)=\langle\cos t, 3 t, 2 \sin 2 t\rangle$
Problem 4. Evaluate:

$$
\int \cos \pi t \boldsymbol{i}+\sin \pi t \boldsymbol{j}+t \boldsymbol{k} d t
$$

Problem 5. Prove that:

$$
\frac{d}{d t}\left(r(t) \times r^{\prime}(t)\right)=r(t) \times r^{\prime \prime}(t)
$$

Problem 6. Compute the length of the curve $r(t)=\boldsymbol{i}+t^{2} \boldsymbol{j}+t^{3} \boldsymbol{k}$ for $0 \leq t \leq 1$.
Problem 7. Find the curvature for the curve $r(t)=\left\langle t, t, 1+t^{2}\right\rangle$
Problem 8. Find $\boldsymbol{T}, \boldsymbol{N}$, and \boldsymbol{B} for $r(t)=\left\langle t^{2}, \frac{2}{3} t^{3}, t\right\rangle$ at the point $(1,2 / 3,1)$
Problem 9. At what point on the curve $x+t^{3}, y=3 t, z=t^{4}$ is the normal plane parallel to the plane $6 x+6 y-8 z=1$?

Problem 10. Prove that:

$$
\frac{d T}{d s}=\kappa N
$$

